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Hexagonal ferrites represent an extensive family of mixed-

layer magnetic materials with periods up to 1500 Å along the

stacking direction, probably constituting the largest unit cells

in the inorganic realm. The (TS)nT subfamily includes P�33m1

and R�33m structures that can be derived from Y ferrite

Ba2M2Fe12O22 (M = Zn, Fe, Co, Mg, Mn) by introducing

stacking faults. A unified (3 + 1)-dimensional superspace

model is proposed for all members of the (TS)nT family.

The model belongs to the superspace group X �33m1ð00�Þ with

X ¼ f 1
3 ;

2
3 ; 0; 1

3

� �
, 2

3 ;
1
3 ; 0; 2

3

� �
g, has a unit cell of the basic

structure with a = 5.88, c = 4.84 Å and modulation vector

q ¼ 4nþ3
9nþ6 c�, where n is rational for periodic structures and

irrational for the aperiodic ones. The model was tested on

calculated data of one of the principal members of the (TS)nT

family, the Y ferrite (n ¼ 1). The fit obtained with the

superspace model was excellent. The model allowed a

reduction of refinable parameters by 19% with respect to

the ordinary refinement without a significant increase of the

refinement R values.
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1. Introduction

The superspace concept is a crystallographic approach for the

generalization of symmetry, structural models and structure-

dependent properties (van Smaalen, 2007; Janssen et al., 2007).

Although the original motivation for the development of the

superspace formalism was the description of aperiodic crystals,

the concept gained general acceptance in a wider range of

applications. In particular, the method is able to combine

related structures into a single model, thus offering a clearer

view of their hidden relationships. While the individual

members of the family can have different space-group

symmetries and be either periodic or aperiodic, the general-

ization in superspace leads to a common crystallographic

structure model and a common superspace group uniting all of

them (Pérez-Mato et al., 1999). The benefits of such a model

are best demonstrated if applied to an extensive and diverse

family of compounds.

Hexagonal ferrites represent a prominent example of such

an extensive family and are widely known for their applica-

tions in motors, consumer electronics, microwave technology

and, recently, in medicine. Currently the family includes more

than 60 members of magnetic materials with unit-cell dimen-

sions extending up to 1577 Å (Kohn et al., 1971). The study of

compounds approaching such a protein-like magnitude is

necessarily complicated by different symmetries of individual

structures and by the large number of possible structure

models, generated by different stacking of several building

units. Fortunately, the generalization in higher dimensional



space offers a mechanism for solving these difficulties. The

description of the family is not only more elegant but also

reveals characteristic relations which are not easily observable

while dealing with individual structures.

2. Hexagonal ferrites

Ferrites in general are complex oxides composed of various

metals and oxygen. By varying the metal atoms in the struc-

ture, one can produce virtually an infinite number of

compounds with various magnetic properties. In magnetic

oxides, the O atoms form an essentially fixed skeleton that can

be filled in a number of different ways by various metals.

‘Hexagonal ferrites’, named in opposition to cubic or spinel

ferrites, form a particular group closely related to the mineral

magnetoplumbite with the approximate chemical composition

Pb[Fe,Mn]12O19. Five principal members termed M, W, Z, X

and Y were extensively described by Braun (1957). Fig. 1

shows the chemical compositions of the compounds in the

ternary phase diagram for the BaO–MO–Fe2O3 system. A

more detailed diagram for the M = Ti system was recently

reported by Siegrist & Vanderah (2003).

The (TS)nT subfamily discussed below was initially

discovered by Kohn & Eckart (1963) and is closely related to

the Y ferrite with chemical composition Ba2M2Fe12O22 (M =

Zn, Fe, Co, Mg, Mn) and space group R�33m. Its unit cell with

c = 43.56 Å includes 18 oxygen layers (Fig. 2a). The cell can be

divided into three parts symmetrically related by the R

centering. Each part contains four successive oxygen layers

followed by two layers with one quarter of O atoms replaced

by barium.

For the purpose of the present analysis we split the

sequence into two stacking units called S and T (Braun, 1957),

which are structurally related to the parent structure of cubic

spinel MO–Fe2O3. The S block is a two-layers thick (111) slice

of the cubic spinel structure. Two tetrahedral interstices and

four octahedral interstices between the oxygen layers are

occupied by the metal atoms. The T block consists of four

oxygen layers. In the two interior layers one fourth of the O

atoms are replaced by barium. Small cations are distributed

among five interstices, two tetrahedral and three octahedral

(Fig. 3). Cations at the octahedral sites lie on a threefold axis,

and their coordination octahedron shares faces with two

adjacent empty octahedra. The chemical composition and
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Figure 1
Composition diagram for hexagonal ferrites. The connecting line between
T and S indicates the (TS)nT family stoichiometry.

Figure 2
(a) S and T building blocks and the stacking sequence of Y ferrite,
Ba2M2Fe12O22 (space group R�33m, a = 5.88, c = 43.6 Å; Braun, 1957). Ba
atoms are pink, O atoms red, Fe atoms yellow, M (Zn, Co, Ti) black. To
visualize the layers better, some extra atoms located outside of the unit
cell are depicted. (b) Schematic representation of the block sequences
used in the modelling of the (TS)nT series. Sequences correspond to
n ¼ 1 [parental Y ferrite, see (a)] and n = 1, 2, 3. Indices of blocks
indicating their x and y positions (see text) are omitted for simplicity.
Extra T blocks are considered as stacking faults.

Figure 3
S and T building blocks: individual oxygen layers and the corresponding
occupation domains. Ba atoms are pink, O atoms red, Fe atoms yellow, M
(Zn, Co, Ti) black. Blue and red bars for T and S occupation domains
correspond to Fig. 6. Generally the exact location of the atoms within S
and T blocks depends on the xy position of the block. Blocks shown here
correspond to Sb and Tc blocks in Fig. 2.



internal organization of S and T blocks do not depend on the

stoichiometry of a particular compound, therefore we consider

them as rigid stacking units.

The Y structure can be constructed by alternate stacking of

the T and S units along the (001) direction. Every TS pair of

blocks is shifted with respect to the previous TS pair by (1
3,

2
3) in

the ab plane. To distinguish the different positions of the

blocks we shall use subscript indices a, b and c in order to

indicate the number of applied shifts (0, 1 and 2, respectively).

The crystallographic build-up of the Y structure is thus

represented by the TaSaTbSbTcSc sequence or shortly (TS)3.

The derived structures involve extra T blocks on a periodic

basis. Starting with an ideal (TS) stacking along the (001)

direction, the extra T blocks can be seen as a result of a

stacking fault between two successive TS units. These TT

faults occur in the TaSaTbSbTcSc reference sequence when one

of the T blocks is not directly followed by an S block, but by an

identical T block which is then followed by the ‘expected’ S

block (Fig. 2b).

Electron microscopy and direct lattice imaging of known

periodic ferrites show that these faults are distributed along

the stacking sequence in the most uniform way, forming a

uniform sequence (Kohn & Eckart, 1963; Van Landuyt et al.,

1973; Pollert, 1985). If we assume that this principle of uniform

distribution is of general validity for any composition, then the

actual layer sequence for a given composition parameter n is

always given by the (TS)nT formula. The range of composi-

tions covered by various values of n lies on the line connecting

T and S on the compositional diagram (Fig. 1), and is limited

by the Y ferrite (n ¼ 1) and the hypothetical T ferrite

(n ¼ 0).

Let us investigate the periodicity of a (TS)nT structure

along the stacking direction. Since each consecutive TS pair in

the regular sequence is shifted by (1
3,

2
3) in the ab plane, it

follows that every extra T block will occur at the position

(n mod 3
3 ,2n mod 3

3 ) from the origin. The structure will have the

stacking periodicity corresponding to the distance of two TT

faults with the same in-plane shift. In the case of commensu-

rate structures this leads to two distinct cases with different

symmetries: n 6¼ 3k and n ¼ 3k, k 2 N0.

2.1. n 6¼ 3k
In this case three TT faults are

necessary to form a unit cell. Hence

the translation vector between

consecutive TT faults is (1
3 ;

2
3 ;

1
3),

which corresponds to the reverse R

centering, or (2
3 ;

1
3 ;

1
3) for the

obverse R centering. The resulting

unit cell will have the space group

R�33m. These structures can be

denoted as [(TS)nT]3, where the

subscript ‘3’ denotes the tripling of

the basic (TS)nT sequence.

As an example, the structure with

n = 1 contains one TT fault after

every TS double block. The corre-

sponding sequence is

TaSaTbTbSbTcTcScTa. The sequence for n = 2 is analogously

TaSaTbSbTcTcScTaSaTbTbSbTcScTa ¼ ½ðTSÞ2T�3:

The Y (n = 1) structure also has the symmetry R�33m and

can thus be formally included in the n 6¼ 3k class.

2.2. n = 3k

In this case the consecutive TT faults have the same posi-

tion in the ab plane and the periodicity is given by only one

(TS)nT sequence. Thus, the cell is not R centered and the

periodicity is only one third of the periodicity of the n 6¼ 3k

case; the space group becomes P�33m1. However, to treat all

possible structures on the same basis, we will consider the unit-

cell dimension of the n ¼ 3k case to be the same as of the

n 6¼ 3k case, i.e. the distance of three TT faults.

The simplest example of a n ¼ 3k sequence is the case

n ¼ 3

TaSaTbSbTcScTaTaSaTbSbTcScTaTaSaTbSbTcScTa ¼ ðTSÞ3T:

Members of the (TS)nT series are listed in Table 1, including

the border cases n = 0 (hypothetical T phase) and n =1 (the

Y ferrite). However, it is reasonable to expect the existence of

other structures with various n, which are not mentioned here.

This especially concerns the incommensurately modulated

structures where n is a non-integer.

3. Unit cell and modulation wavevector

By taking n as a composition-dependent parameter, the

members of the (TS)nT series can be described by the formula

Ba2nþ2M2nFe12nþ8O22nþ14. The a unit-cell parameter approxi-

mately equals 5.88 Å for every member. The number of T and

S blocks in the unit cell defines the c parameter. There are

3nþ 3 T blocks with four oxygen layers, and 3n S blocks with

two oxygen layers in a [(TS)n]3 sequence. This yields 18nþ 12

oxygen layers per unit cell. The average layer-to-layer distance

is approximately 2.42 Å (Braun, 1957), yielding c ’ 2.42

(18nþ 12) Å. In the construction of the ideal model we shall

assume that the location of ‘small’ atoms, such as Fe and Zn, is

strictly defined by the encompassing oxygen layers.
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Table 1
Chemical and crystallographic data for members of the (TS)nT structural series (Kohn & Eckart, 1963;
Kohn et al., 1971; Pollert, 1985).

The structure of T ferrite (n ¼ 0) is only hypothetical.

n Stacking sequence Space group Layers in unit cell Composition c parameter (Å)

0 (TS)0T = (T)3 P�33m1 4 � 3 = 12 Ba2Fe8O14 29.07
1 (TS)1T R�33m 30 Ba4Zn2Fe20O36 72.6
2 (TS)2T R�33m 48 Ba6Zn4Fe32O58 116.2
3 (TS)3T P�33m1 22 � 3 = 66 Ba8Zn6Fe44O80 159.7
4 (TS)4T R�33m 84 Ba10Zn8Fe56O102 203.0
5 (TS)5T R�33m 102 Ba12Zn10Fe68O124 247.0
6 (TS)6T P�33m1 40 � 3 = 120 Ba14Zn12Fe80O146 290.4
7 (TS)7T R�33m 138 Ba16Zn14Fe92O168 334.0
8 (TS)8T R�33m 156 Ba18Zn16Fe104O190 378.0

1 (TS)1T = (TS)3 R�33m 18 Ba2Zn2Fe12O22 (Y ferrite) 43.6



For the superspace embedding, a structural model needs to

be defined for which the description of any member of the

family is reduced to an occupation modulation of a unique

basic structure. There are several possibilities for selecting the

unit cell of the basic structure. However, because the S block

represents the smallest rigid unit and it has two oxygen layers,

it is a natural choice to select the period of two oxygen layers

as the c parameter of the unit cell of the basic structure (basic

unit cell in short). Since the length of the [(TS)nT]3 sequence is

18nþ 12 oxygen layers, it follows that the modulation vector

must be of the form ð0; 0; �Þ with � ¼ 2k
18nþ12, where k and

18nþ 12 do not have any common divisor. This relation

establishes a direct link between the composition and the

modulation vector. A suitable value of k can be determined

from diffraction patterns and will be defined in x4.

4. Diffraction patterns

While the structures of the few principal ferrites are well

described and the corresponding structural data are easily

available (Braun, 1957; Soohoo, 1960), obtaining the atomic

positions for intermediate family members is more difficult. In

former publications, only the stoichiometry is given, while

structural data are absent or deficient (Kohn & Eckart, 1963,

1965). Therefore, we simulated the electron diffraction

patterns (EDP) of several phases from the atomic arrange-

ments of the T and S blocks and from the sequence of the

blocks. As a source of the atomic coordinates of the T and S

blocks we used the structure of the Y ferrite determined by

Shin & Kwon (1993). The EDPs were simulated with the

SingleCrystal software (CrystalMaker Software Ltd, 2007)

for a wavelength of 0.037 Å and a sample thickness of

30 Å.

The (00l) rows of the patterns (Fig. 4) exhibit spots with a

clear dependence on the composition parameter n. The posi-

tion of the spots indexed as 0 0 6 for n = 0, 0 0 15 for n = 1,

00 24 for n = 2 and their analogues for other compositions

remain unchanged from pattern to pattern. These reflections

are associated with the reciprocal distance 0.207 Å�1, which in

real space yields 4.8 Å and corresponds to two O-atom layers

or the thickness of the S block. This is exactly the c parameter

of the basic unit cell chosen in the previous section. Thus,

these reflections correspond to the 0 0 1 0 reflection in the

(3 + 1)-dimensional indexing independently of the compound

they belong to.

The spots not indexable with the reciprocal basic unit cell

are composition dependent and shall be considered as satel-

lites. They can be indexed using a vector of the general form

lc� þmq, i.e. ð00lmÞ. It has already been mentioned in the

previous section that the choice of the modulation vector q in

the set of purely commensurate structures is not unique.

However, there is usually a choice that is more convenient for

practical reasons. In our case, there are spots which are always

strong and whose location varies smoothly with composition.

We decided to consider the vector

from the origin to these satellite

peaks as the composition-depen-

dent q vector. However, as a

result of the non-standard

centering of the (3 + 1)-dimen-

sional unit cell along as4 (see x5)

the diffraction pattern fulfills the

reflection condition m ¼ 3n for

the 00lm reflections. Noting that

the reflections 0001 and 0002 are

absent, we conclude that the

strong spots will have indices

0003. The corresponding modula-

tion vector is indicated by red

arrows in Fig. 4. The modulation

vector has the form ð0; 0; �Þ, and

for n = 0, 1 and 2 this scheme

yields the values � ¼ 1
2,

7
15 and 11

24,

respectively. The � component of

the modulation vector can be

generally expressed as

� ¼ 4nþ3
9nþ6 ¼

8nþ6
18nþ12. The latter frac-

tion underlines the relation

between the modulation vector

and the total number of oxygen

layers in the three-dimensional

unit cell. The selected modulation

vector allows any satellite spot to

be indexed. The principle used to
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Figure 4
The three-dimensional (small) and (3 + 1)-dimensional indexing of 00l reflections observed in electron
diffraction patterns (EDP) for n = 0, 1, 2, 3 and1. The patterns are simulated based on Kohn & Eckart
(1963), Pollert (1985) and Shin & Kwon (1993). Using c = 4.84 Å (two oxygen layers) and q ¼ 4nþ3

9nþ6 c� the
indexing with four indices (00lm) is uniform for all the patterns. The modulation vectors are shown by
arrows. The reflection condition m ¼ 3n (see x5) is observable in the patterns. As an example, another line
of modulation vectors is shown starting from the reflection 0030 to illustrate that indexing of other spots is
possible.



index the diffraction pattern with four indices is schematized

in Fig. 5.

5. Superspace group

The superspace group for the (TS)nT subfamily should

generate the space groups R�33mobverse, R�33mreverse and P�33m1 for

rational values of �. The database relating three-dimensional

and (3 + 1)-dimensional symmetry, Superspace Finder (Orlov

& Chapuis, 2004–2007), yields the superspace group R�33mð00�Þ
as the only superspace group meeting this criterion. This

superspace group leads to a reflection condition hklm:

h� kþ l ¼ 3n, and as a result the first observed main

reflection in the 00lm rows shown in Fig. 4 would have the

index 0030. This corresponds to a tripled value of the c

parameter of the basic unit cell. We prefer to operate with the

c parameter equal to two oxygen layers, as was elucidated in

x3. Therefore, we transform the standard setting R�33mð00�Þ to

an equivalent setting X �33m1ð00�Þ with the non-standard

centering X given by the generating vector (1
3 ;

2
3 ; 0; 1

3) leading

to the reflection condition h� kþm ¼ 3n. In this setting

both the c parameter and the modulation vector are reduced

to one third with respect to the standard setting. It is this

setting of the superspace group

that is used throughout this work.

The list of symmetry operations

for the superspace group

X �33m1ð00�Þ is given in Table 2. The

possible three-dimensional space

groups for the rational q vector

can be obtained by applying

simple algebraic rules (Tamazyan

et al., 1996), and are listed in Table

3, depending on � and the starting

phase t0. It follows from the table

that for a given value of � the

choice of the three-dimensional

space goup is limited to only two

possibilities, depending on the

particular value of the starting

phase t0, i.e. the section in super-

space which corresponds to the

real space structure. To our

knowledge, all the periodic (TS)nT

phases reported so far (Kohn &

Eckart, 1963; Kohn et al., 1971;

Pollert, 1985) belong to the space

groups listed in Table 3.

6. Construction of the
superspace model

The basic characteristics of the

proposed (3 + 1)-dimensional

model were defined in the

previous sections. The a unit-cell

parameter is identical for all

(TS)nT structures, and it remains

unchanged in the (3 + 1)-dimen-
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Figure 5
The three-dimensional and the (3 + 1)-dimensional indexing of the 0klm plane of a diffraction pattern for
n = 1 (Ba4Zn2Fe20O36). The pattern was simulated using data from Shin & Kwon (1993). Small indices
represent a three-dimensional lattice (R�33m, a = 5.88, c = 72.6 Å), bold italic for (3 + 1)-dimensional
average lattice hkl0 and the roman bold for satellite reflections (modulation vector q ¼ 7

15 c�). The lattice
of the main reflections is indicated by a grid. It can be observed on the image that the reflections follow the
reflection condition h� kþ l ¼ 3n for the three-dimensional indexing and h� kþm ¼ 3n for the
(3 + 1)-dimensional indexing.

Table 2
Symmetry operations of the superspace group X �33m1ð00�Þ with
X ¼ fð13 ;

2
3 ; 0; 1

3Þ,ð
2
3 ;

1
3 ; 0; 2

3Þg and the resulting reflection condition.

Generators of the superspace group X �33m1ð00�Þ
t (1

3 ;
2
3 ; 0; 1

3) (x1þ 1
3 ; x2þ 2

3 ; x3; x4þ 1
3)

30;0;z ð�x2; x1� x2; x3; x4Þ
�11 ð�x1;�x2;�x3;�x4Þ
2x;x;0 ðx2; x1;�x3;�x4Þ
Reflection conditions
hklm h� kþm ¼ 3n

Table 3
Space groups for commensurate structures with superspace group
X �33m1ð00�Þ with X ¼ fð13 ;

2
3 ; 0; 1

3Þ,ð
2
3 ;

1
3 ; 0; 2

3Þg depending on the parity of
the numerator s and denominator r of � ¼ s

r; k and m are arbitrary
integers.

� ¼ s
r

3k
3mþ1

3k
3m�1

3k�1
m

t0 ¼
k
2r R�33mobverse R�33mreverse P�33m1

t0 ¼ arbitrary R3mobverse R3mreverse P3m1



sional unit cell, while c = 4.84 Å and q ¼ 4nþ3
9nþ6 c�, as defined

above.

Fig. 6 illustrates the assembling of the superspace model.

The vertical axis as4 represents the internal space dimension

and the horizontal axis is the stacking direction c. The blue

and red occupation domains along the internal space indicate

oxygen layers belonging to T and S blocks, respectively. The S

block consists of two oxygen layers while the T block includes

four, i.e. twice that number (Fig. 3). For the initial model we

assume that one occupation domain in Fig. 6(a) describes two

consecutive oxygen layers and thus the representation of the T

block requires two adjacent occupation domains – one for the

layers 1 + 2 and one for the layers 3 + 4.

In real space the block sequence is obtained as a horizontal

cut (c axis) of the construction where the z coordinate in the

three-dimensional physical space is defined by the x3 coordi-

nate in the (3 + 1)-dimensional superspace. The occupation

domains are translated along the as3 axis due to the periodicity

of the (3 + 1)-dimensional unit cell. The inclination of the as3

axis depends on the value of � ¼ 4nþ3
9nþ6. Consequently, for some

horizontal cuts the layer sequence in real space will be

modified, and, in particular, four successive T block domains,

i.e. a TT fault, can be found in the sequence. An example of

such a fault can be seen directly below the t = 1
3 level (yellow

horizontal line in Fig. 6a), where two T domains come into

contact along c.

The ratio between the S and T blocks in a (TS)nT sequence

is n
nþ1. The volume occupied by the T and S occupation

domains in the superspace model must consequently follow

the same ratio. Since there are two T domains and one S
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Figure 6
Assembling of the superspace model. (a) A preliminary model at the level of building blocks. In this model the vertical sizes of T and S occupation
domains are set equal and xy shifts between blocks are not shown. The yellow line indicates a cut with a TT fault. Since the width of the occupation
domains is not set properly, the closeness condition is not fulfilled and thus incorrect half T blocks occur. The a

applet
s3 axis corresponds to a unit cell nine

times larger which is used in interactive models on http://superspace.epfl.ch/ferrites/applet2.html. The gaps between the blocks are added to the image for
lucidity and are not present in the model itself. (b) Each block is split into atomic layers, the domain lengths along x4 are properly adjusted, and the
corresponding xy shifts are indicated by color. White represents unshifted blocks, which are taken as a reference point, and more intense colors indicate
blocks which underwent one or two translations. In this model the closeness condition is already met.



domain per one third of the periodicity along as4, the T domain

must have an x4 length LT ¼
nþ1

9nþ6 and the S domain LS ¼
n

9nþ6.

With increasing n, LT will increase slower than LS, thus

decreasing the presence of the T blocks. With these lengths of

the occupation domains it will be guaranteed that an S domain

will always be followed by two consecutive T domains, and

thus no ‘half-T blocks’ can occur (compare Figs. 6a and b).

This condition is equivalent to fulfilling the closeness condi-

tion (Cornier-Quiquandon et al., 1992; Zakhour-Nakhl et al.,

2000).1

The construction of Fig. 6(b) shows T and S blocks with

resolved individual oxygen layers. They are numbered

according to their stacking order inside the corresponding

block (Fig. 3). In real space the identical building units appear

shifted by a translation of 1
3 ;

2
3

� �
parallel to the ab plane (Fig.

2). In Fig. 6 this shift is illustrated by color intensity.2

Each occupation domain from Fig. 6 can be further split to

describe individual atoms instead of the whole layers, as illu-

strated in Fig. 7. Atomic positions and the positions of the

occupation domains of individual atoms are listed in Table 4.

The number of domains can be reduced by joining atomic

occupation domains connected across the border between

blocks. This involves pairs of atoms O1_T1 + O1_S1,

O2_T1 + O5_S1, Zn1_T1 + Zn2_S1 and Fe4_T4 + Fe2_S2

(see Fig. 7). This joining reduces the number of atomic posi-

tions in the superspace model from 12 to 9, while leaving the

resulting three-dimensional constructions intact.

The inversion centers are located in the middle and at the

borders of the blocks (cf. Fig. 8). Since the lengths of the

blocks change with n, so does the position of the inversion

center. If the origin of the unit cell should coincide with the

origin of the S block independently of n, the origin of the

superspace group has to be shifted. We selected as a reference

the inversion center with the coordinates (0; 0; 1
4) (shown in

bold in Fig. 8). This inversion center is located at the border of

the layers T1 and T2, and thus has the t coordinate equal to
2nþ1
9nþ6. The x4 coordinate follows from x4 ¼ t þ qr, where

r ¼ 0; 0; 1
4

� �
as 12nþ7

36nþ24. Thus, the origin shift of the superspace

group from the standard setting with the inversion center in

the origin becomes s ¼ ð0; 0;� 1
4 ;�

12nþ7
36nþ24Þ.

7. Refinement of the Y ferrite, n = 1

The layered model presented above involves some idealiza-

tions and must be combined with the displacive modulation of

the atoms to describe a real structure. For example, the Ba

atoms are larger than the O atoms and they lie approximately

0.25 Å out of the plane of the oxygen to satisfy the bond-

valence conditions. The distance between a layer with a

barium and the following oxygen layer is reduced from 2.42 to

2.35 Å.

These deviations from the ideal model can be incorporated

in the superspace model as deviations of the basic positions of

the atoms from their ideal positions as well as changes of the

shape of the modulation functions from a constant function to

a more general shape.

To demonstrate that the general model is also able to

describe a real structure and to validate the model we decided

to refine the model against the real data of a ferrite structure.

research papers

Acta Cryst. (2007). B63, 703–712 Ivan Orlov et al. � Superspace model for hexaferrites 709

Figure 7
as3 � as4 projection of atomic domains of the superspace model. The case
n ¼ 1 is shown with M = Zn. In this projection the occupation domains
for Ba and O atoms coincide. To improve the visibility of the barium
domains, they are slightly shifted along z.

1 As a result, we obtain a superspace construction which can be seen
interactively at http://superspace.epfl.ch/ferrites/ (Orlov & Chapuis, 2005). The
Flash application allows to change the composition parameter n and move the
real-space section with the mouse, thus making it possible to observe the
influence of the model parameters on the resulting structure in real time.
2 An interactive model of the structure with layer resolution can be observed
at http://superspace.epfl.ch/ferrites/applet2.html. As in the previous case, it is
possible to modify the value of n in the corresponding window and observe the
evolution of the layer sequence in real space by dragging the t-line. Note that
for convenience the model as3 axes correspond to the nine-times larger c
parameter (axes a

applet
s3 in Fig. 6), while the arrangement of the occupation

domains remains the same regardless of the cell choice.



Unfortunately it turned out that detailed structure determi-

nations of the intermediate members of the ferrite family

(0< n<1) are not available in the literature. The only

structure from the TS family available in the ICSD database is

the structure of the Y ferrite Ba2Zn2Fe12O22 (n = 1, � = 4
9).

However, no single-crystal experimental data are available for

any of the ICSD entries for this compound.

Therefore, we decided to perform the refinement against a

simulated dataset calculated from the published crystal

structure. As a starting point we used the structure published

by Shin & Kwon (1993). This structure was determined from

powder diffraction data; it is the most recent publication and

the differences among different published structures are

minor. The octahedral positions that are in the ideal ferrite

model occupied by a Zn atom are in the published structure

partially occupied by Zn and partially by Fe. Since the two

atoms have identical parameters, we merged them together

and assigned the Zn atomic type to the merged atom. We used

this simplified model (which, however, has an identical

number of parameters as the real published structure) as a

starting point for our calculations.

Using the program JANA2000 (Petřı́ček et al., 2000), the

amplitudes of the structure factors of the model structure were

calculated up to the resolution sin �=� ¼ 0:7 Å�1. Then the

three-dimensional indices of the calculated reflections were

transformed to four-dimensional indexing using � ¼ 4
9 and a

scheme similar to Fig. 5. These reindexed structure factors

were then used as ‘experimental’ data for the refinement of the

superspace model. The superspace model was constructed as

described in the previous sections. In particular, the t0 ¼
1

18 as

follows from Table 2 for the modulation vector q ¼ 4
9 c�, and

the origin shift of the space group was set to (0; 0;� 1
4 ;�

1
3) as
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Table 4
Basic atomic positions and parameters of the atomic occupation domains
for the superspace model of the (TS)nT series.

* indicates independent atomic positions. The four pairs of atoms marked with
the signs|,},~ and€ have connected occupation domains and can be joined
into a single occupation domain with the length given by the sum of the lengths
of the individual atoms. x4 center and �x4 indicate the position of the center
and the width of the occupation domains, respectively.

Basic position Occupation domain

Block Layer Atom x y z x4 center �x4

T T1 |O1_T1* 0 0 0 3nþ1
18nþ12

nþ1
9nþ6

}O2_T1* 1/2 0 0
Fe1_T1* 2/3 1/3 1/4
~Zn1_T1* 0 0 3/8

T T2 Ba1_T2* 1/3 2/3 1/2 3nþ1
18nþ12

nþ1
9nþ6

O3_T2* 5/6 2/3 1/2
Fe2_T2* 2/3 1/3 3/4

T T3 O4_T3 1/6 5/6 0 5nþ3
18nþ12

nþ1
9nþ6

Ba2_T3 2/3 1/3 0
Fe3_T3 1/3 2/3 1/4
Zn_T3 0 0 1/8

T T4 O5_T4 0 0 1/2 5nþ3
18nþ12

nþ1
9nþ6

O6_T4 0 1/2 1/2
€Fe4_T4* 1/3 1/6 3/4

S S1 |O1_S1* 0 0 0 n
18nþ12

n
9nþ6

}O5_S1* 1/2 0 0
~Zn1_S1* 2/3 1/3 1/8
Fe1_S1* 1/3 2/3 1/4
Zn2_S1 0 0 3/8

S S2 O5_S2 1/6 5/6 1/2 n
18nþ12

n
9nþ6

O6_S2 2/3 1/3 1/2
€Fe2_S2 1/2 1/2 3/4

Figure 8
Refined model: as3 � as4 projection of atomic domains of the model for
the Ba2Zn2Fe12O22 (n = 1, t0 ¼

1
18) case refined against the simulated

data set. The relevant points (three-dimensional atomic positions) are
indicated by solid circles, inversion centers by blue crosses. The bold blue
cross represents the reference inversion center, used for the calculation of
the origin shift of the superspace group (see text for details).



follows from the general formula s ¼ ð0; 0;� 1
4 ;�

12nþ7
36nþ24Þ

derived in x6.

The three-dimensional structure of the Y ferrite contains 12

independent atoms. The superspace model contains nine

independent atoms (Table 4). The inspection of the models

shows that only atoms Zn1_T1, O1_T1 and O2_T1 in the

superspace model give rise to two independent atoms in the

three-dimensional structure of the Y ferrite. These three

atoms thus require a positional modulation to describe the

positions of the two independent atoms in the three-dimen-

sional structure. Moreover, the atom Fe4_T4 also requires a

positional modulation, because it lies on a special position, but

transforms into an atom in the three-dimensional structure

that lies on a more general position with two more refinable

parameters. In all cases one harmonic wave is sufficient to

account for the displacement of the atoms. All other atoms

have the same number of refinable parameters in the four-

dimensional model as they have in the three-dimensional

model, and thus do not require the refinement of an additional

displacement modulation. The relationship between the atoms

in the four-dimensional model and in the three-dimensional

structure is illustrated in Fig. 8.

The three-dimensional model has 47 refinable parameters,

and because the four-dimensional model is just an alternative

description of the same structure, it must have in the most

general case the same number of parameters. When the

modulation waves for the position and displacement para-

meters were added, this condition was indeed fulfilled and the

four-dimensional model had 47 refinable parameters. As the

generated data were noise-free, the model should fit the data

perfectly. This was indeed the case and the refinement R value

of all reflections was 0.0007, the remaining tiny difference

from zero being most probably due to the different numerical

handling of the structures in three-dimensional and four-

dimensional models and rounding effects. This refinement

confirmed that the four-dimensional model is applicable to

real structures and that it offers the same flexibility as the

three-dimensional refinement.

The inspection of the refined parameters has shown that all

the modulations of the displacement parameters were small

and strongly correlated with the average displacement factors.

Therefore, these modulation functions were removed from the

model. For the same reason the displacement modulation of

atom O1_T1 was set to zero. This resulted in a refinement with

only 38 refinable parameters (19% less than the full number).

Despite the reduction of the number of parameters, the

refinement R values increased only slightly (Rall = 0.0052). The

comparison of the refinements is shown in Table 5.

These results confirm the validity of the superspace model

and they illustrate how the model can be used to significantly

decrease the number of refinable parameters. The reduction of

the parameters might seem only moderate in the particularly

simple case of the Y ferrite, but might prove crucial in the

refinement of the more complex members of the ferrite family.

8. Concluding remarks

We have shown that the ferrites from the (TS)nT structural

family Ba2nþ2M2nFe12nþ8O22nþ14 can all be described as

modulated structures with a composition-dependent modula-

tion wavevector. The corresponding superspace model is

essentially composition independent and valid for any

compound. It is worth stressing that the superspace model is

not limited to the case of regular periodic structures, as

discussed here, but can also generate aperiodic structures

obtained with irrational values of n.

The occupation domains in the idealized superspace model

are described by crenel-like functions with a composition-

dependent width. The deviations away from the ideal model

with rigid layers can be accounted for by means of displacive

modulations.

The superspace group of the model is X �33m1ð00�Þ and the

three-dimensional space group for any particular member can

be derived by simple rules from this single superspace group.

It is the unification of the different symmetries that makes the

superspace concept so powerful.

A further important point is that the superspace description

allows a significant reduction of the number of refined struc-

tural parameters. In the case presented here the number has

decreased from the 47 parameters used in the three-dimen-

sional refinement to 38 parameters in the superspace model. It

was also shown that the superspace approach is well suited for

describing in a unified model the diffraction patterns of

simulated structures with different compositions.

The proposed superspace model takes into account the

essential structural units of the hexaferrites, which also carry

the magnetic properties rigidly associated with them. The

presented work makes a first step towards an all-inclusive

description of the hexagonal ferrites, in particular embedding

the physical properties of ferrites into the superspace.

Supporting information available: the files containing the

model of (TS)nT series in JANA2000 format have been

deposited.3
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Table 5
The refinement R values of the superspace models refined against a
dataset generated from a real structure of Y ferrite.

Model A denotes the full superspace model with all refinable parameters
refined. Model B denotes a model with insignificant modulation parameters
set to zero.

Model A Model B

No. of parameters 47 38
R values Rall:

All reflections 0.0007 0.0052
Main reflections 0.0007 0.0013
First-order sat. 0.0007 0.0027
Second-order sat. 0.0008 0.0060
Third-order sat. 0.0006 0.0077
Fourth-order sat. 0.0005 0.0080

3 Supplementary data for this paper are available from the IUCr electronic
archives (Reference: SN5054). Services for accessing these data are described
at the back of the journal.
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